Feature extraction using fuzzy inverse FDA

نویسندگان

  • Wankou Yang
  • Jianguo Wang
  • Mingwu Ren
  • Lei Zhang
  • Jing-Yu Yang
چکیده

This paper proposes a new method of feature extraction and recognition, namely, the fuzzy inverse Fisher discriminant analysis (FIFDA) based on the inverse Fisher discriminant criterion and fuzzy set theory. In the proposed method, a membership degree matrix is calculated using FKNN, then the membership degree is incorporated into the definition of the between-class scatter matrix and withinExperimental results on the ORL, FERET face databases and pulse signal database show that the new method outperforms Fisherface, fuzzy Fisherface and inverse Fisher discriminant analysis. Crown Copyright & 2009 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

FuRIA: An Inverse Solution based Feature Extraction Algorithm using Fuzzy Set Theory for Brain-Computer Interfaces

This paper presents FuRIA, a trainable feature extraction algorithm for non-invasive Brain-Computer Interfaces (BCI). FuRIA is based on inverse solutions and on the new concepts of fuzzy Region Of Interest (ROI) and fuzzy frequency band. FuRIA can automatically identify the relevant ROI and frequency bands for the discrimination of mental states, even for multiclass BCI. Once identified, the ac...

متن کامل

A practical application of kernel-based fuzzy discriminant analysis

A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variant...

متن کامل

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection

Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009